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Abstract. Accurate Snow Water Equivalent (SWE) estimation is significant for understanding global climate change, surface
energy balance, and regional water cycles. However, although there have been many studies on the inversion of SWE using
active and passive microwave remote sensing, it remains challenging to assess the global distribution of SWE with sufficient
temporal and spatial resolution and accuracy. Interferometric Synthetic Aperture Radar (INSAR) has become a promising
technique for SWE change estimation, which is limited by the optimal radar frequencies and revisit intervals that have not
been available until recently. In this study, 12-day Sentinel-1 C-band InSAR data from 2019 to 2021 are used to retrieve ASWE
(SWE changes in one INSAR pair) and cumulative SWE in the Altay region of Xinjiang, China. The correlation between the
retrieved ASWE and in-situ observations reaches R=0.48, with a low RMSE of 15.5 mm (n=241) throughout the two whole
snow seasons, improving to R=0.47 and RMSE of 15.9 mm for 2019-2020, and R=0.51 and RMSE of 14.8 mm for 2020-2021.
These results are achieved without filtering for low coherence or high temperatures. Heavy snowfall leads to decorrelation and
phase unwrapping errors, which affect ASWE retrieval and are propagated into cumulative SWE. Validation of the cumulative
SWE after removing wet snow yields an RMSE of 36.5 mm, which improves to 28.4 mm when high-elevation stations with
unwrapping errors due to heavy snowfall are also excluded. InSAR-derived cumulative SWE time series show consistency
with ground observations at some stations, though slight overestimations and underestimations are observed due to error
accumulation. Various factors combined with validation results show that higher coherence, lower air temperature, and reliable
snow density improve the retrieval accuracy. The proposed phase calibration method demonstrates that selecting at least half
of the available in-situ ASWE values for calibration yields reliable ASWE estimates. Calibrating only the integer multiples of
2 provides reasonable accuracy, but is still inferior to the full calibration method, indicating that residual modulo 2z phase
has a noticeable contribution to the final inversion accuracy, which highlights that phase calibration plays a key role in the
accurate ASWE retrieval. This study provides a valuable reference and processing prototype for applying 12-day revisit
Sentinel-1 and future NISAR InSAR data to SWE monitoring.
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1 Introduction

Snow significantly influences the balance of surface radiation energy due to its high albedo, thermal insulation properties, and
heat absorption during melting periods (You et al., 2020). These characteristics make snow become an essential indicator of
the global climate system (Aguirre et al., 2018). Snowmelt is a crucial source of water resources to billions of people worldwide
(Barnett et al., 2005). Snow water equivalent (SWE) is defined as the height of liquid water would be produced if a snow
column of a specified thickness area completely melts into water, and it is a crucial input parameter in hydrological processes,
ecological models, and climate system models (Derksen et al., 2010), while also playing a key role in the energy transfer
process between soil and atmosphere. However, evaluating the global distribution of SWE with adequate temporal and spatial
resolution and accuracy remains challenging.

Passive microwave (PM) remote sensing, based on the microwave emissions from snowpack (Foster et al., 1997), is
currently the main method of retrieving daily spatiotemporal information on SWE at a large scale. This method will become
saturated for SWE larger than 150 mm, which limits their use in mountainous areas. Many research has been conducted using
passive microwave remote sensing to estimate snow depth and SWE (Takala et al., 2011; Dai Liyun et al., 2012; Tedesco and
Jeyaratnam, 2016). While satellite-based passive microwave remote sensors have provided valuable insights for global
estimation of cryosphere snow depth (SD)/SWE, they have limited spatial resolution, typically at the 10-kilometer level.
Although a large amount of efforts have provided accurate SWE products using PM observations, existing SWE products still
do not meet the minimum accuracy requirements for hydrological applications (Brown et al., 2018).

Active microwave (radar) has shown stronger applicability in basin-scale snow research due to its high spatial resolution
(tens of meters typically) and sensitivity to snow parameters (Storvold et al., 2006; Shi and Dozier, 1996; Thakur et al., 2012).
This technique relies on backscattering from the volume scattering of snow. Higher frequencies (Ku and X-band) have been
used to estimate SWE (Rott et al., 2010; Yueh et al., 2009; King et al., 2018; Zhu et al., 2021). However, a single parameter
retrieval of SWE is challenging because radar backscatter is a function of several other parameters, including snow density,
snow depth, snowpack liquid water content, snow stratigraphy, snow grain size, and soil/vegetation conditions, as well as
systematic factors (frequency, polarisation). Moreover, snow microstructure parameters are hard to assess over a large scale
(Rutter et al., 2019).

Recently, repeat-pass Interferometric Synthetic Aperture Radar (INSAR) offers a promising approach to obtaining SWE
changes at high spatial resolution and accuracy (depending on wavelength, e.g., 15 mm at L-band, 3.75mm at C-band.) by
capturing radar phase changes. The method for retrieving SWE using INSAR was first proposed by Guneriussen et al. in 2001
(Guneriussen et al., 2002). The advantage of this approach is that at low frequencies, the stratigraphy of the snow hardly affects
the retrieval of SWE (Yueh et al., 2017), and knowledge of snow microstructure is not required. Subsequently, the technique
is applied under various conditions, including a range of frequencies, temporal baseline pairs, and different acquisition
platforms. It was applied to C-band spaceborne repeat-pass INSAR datasets from ERS with a short temporal baseline of 3-day
which is conducted on the Austrian Alps (Rott et al., 2003) and the North Slope of Alaska (Deeb et al., 2011). The C-band
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spaceborne repeat-pass INSAR datasets from Sentinel-1 with a 6-day revisit during winter over Idaho are applied to retrieve
SWE (Oveisgharan et al., 2024). The higher frequency X/Ku-band is explored using dense time series from a ground-based
radar (Leinss et al., 2015). Demonstrations of low-frequency L-band are based on a variety of airborne INSAR data, such as a
4-month dataset from DLR’s E-SAR (Rott et al., 2003), 12-day pairs from NASA/JPL’s UAVSAR (Marshall, 2020), and 8-
day temporal baselines also from UAVSAR (Hoppinen et al., 2023). Additionally, temporal baselines ranging from 5 to 20
days are analyzed from UAVSAR pairs in forested areas (Bonnell et al., 2024). Spaceborne L-band, 4-month InSAR pairs
from ALOS-2 are examined over regions with sparse vegetation (Lei et al., 2023). In the Altay region of Xinjiang province,
China, available historical L/C-band InSAR datasets (e.g., JAXA’s ALOS, ESA’s Sentinel-1, and China’s Lutan-1) are utilized
to produce SWE change products (Lei et al., 2024). These investigations demonstrate that low-frequency radar signals,
combined with shorter revisit times, can enhance penetration and reduce temporal decorrelation. This makes them particularly
suitable for monitoring SWE in areas with frequent snowfall. Nevertheless, the limited availability of satellite observations
with suitable frequencies and temporal baselines cause a challenge to the widespread application of this technique.

At present, Sentinel-1 data with a 6-day revisit period and INSAR method have been used to retrieve SWE in Idaho, USA,
and good results have been obtained (Oveisgharan et al., 2024). However, the use of spaceborne data and the INSAR method
for SWE retrieval has not been widely examined. In most regions globally, only a 12-day revisit period of Sentinel-1 data can
be achieved (Kellndorfer et al., 2022). The retrieval performance under a 12-day revisit period with C-band spaceborne data
has not been well studied. In this study, we evaluated the performance of SWE retrieval over Altay using interferometry based
on 12-day C-band Sentinel-1 data. In Sect. 2, we introduce the study area and dataset used. Section 3 describes the methodology
we use, which shows how we processed Sentinel-1 data and transform it to SWE. Section 4 introduces the comparison between
the retrieved SWE with in-situ data, followed by factors that may influence the results in Sect. 5. At last, the conclusions are

provided in Sect. 6.

2 Study Area and Datasets
2.1 Study Area

Altay Prefecture (44°59'35" ~49°10'45"N, 85°31'57" ~91°01'15"E) of Xinjiang province is situated in the region of
northwestern China, covering a total area of approximately 118,000 km?, which borders Kazakhstan, Russia, and Mongolia.
Altay Prefecture is one of the regions with rich seasonal snowmelt water resources, providing snow water resources for these
four countries. The average annual snow depth is approximately 40 centimeters, with a maximum over 70 cm (Dai et al., 2022).
The snow accumulation period is from October to late March or early April, which lasts about 5 to 6 months. The snow density
is small, with a typical value of 0.2 g €m™ (Yue et al., 2017). The region experiences a typical temperate continental climate
with shorter, warm, and rainy summers and long and severely cold winters with much snow, and with a mean annual
temperature ranging from 0.7 T to 4.9 T (Fu et al., 2017). The terrain is low in the southwest and high in the northeast (Fig.

1). The northeastern part of Altay is mountainous, with elevations rising over 3000 m. The center area is flatter, ranging

3
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between 700-800 m. The southwest is the lowest, at around 600 m. Our core study area is located in the Altay region of
Xinjiang, China, between 47.80 <and 48.26 N and 88.05 <and 88.68 <E, around 50>60 km.

87.500°E 88.000°E 88.500°E 89.000°E 89.500°E 90.000°E 90.500°E

48.500°N
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Figure 1: Location of study area, including 15 in-situ snow station points.

2.2 Datasets
2.2.1 Sentinel-1

The European Space Agency’s (ESA) Copernicus Sentinel-1 mission was launched by the in 2014 with the Sentinel-1A
satellite, launched on 3 April 2014, complemented with the second Sentinel-1B, launched on 25 April 2016. Each satellite has
a 12-day repeat cycle. They orbit 180<apart, together imaging the Earth every 6 days but only in limited regions, which are
predominantly over Europe (Kellndorfer et al., 2022). Sentinel-1 supports dual polarization and delivers products quickly. The
data can be freely accessed from the Alaska SAR Facility (ASF, https://search.asf.alaska.edu/). The Sentinel-1 radar operates
at C-band (5.405GHz) and offers four imaging modes. These modes vary in resolution, reaching as fine as 5 m, and cover up
to 400 km. The main operational mode used in this study is the Interferometric Wide swath (IW) mode, which operates as
TOPS mode, offering a large swath width of 250 km with a ground resolution of 5520 m in range and azimuth, respectively
(Torres et al., 2012). Hence, a 15>5 (range>azimuth) multilooking is applied, resulting in a final resolution of 75x100 m. For
this study, Sentinel-1 Single Look Complex (SLC) data is collected over the Altay region. 19 scenes (path:19, frame:434) were
acquired every 12 days from September 5, 2019, to April 8, 2020, and 18 scenes from September 11, 2020, to April 3, 2021.
The data corresponds to path 19, frame 434, with a descending flight direction.
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2.2.2 In-situ snow observations

The observation data of snow parameters, including snow depth and SWE, is collected from in-situ sites established by the
Altay Meteorological Institute and from our own established observation stations. A total of 15 sites are available from 2019
to 2021. These sites are primarily situated in flat areas to minimize the influence of surrounding vegetation. Among these sites,
only two measure SWE using snow pillow, while the remaining 13 sites measure snow depth. Snow depth sites use lasers, or
snow poles and cameras. The snow depth obtained by laser is automatically obtained with a shorter interval of 10 minutes or
one hour. However, the snow depth of the photographic snow observation station needs to be read manually with a slightly
longer interval of 3-4 hours. The locations and environments of the snow depth measurement sites using snow poles and
cameras are shown in Fig. 2. SWE data are collected less frequently, with 3 to 7 days intervals. For SWE’s validation purposes,
snow depth is converted to SWE using the snow density from ERA5. Observations that are closest to satellite pass times are
selected for this validation.

(a) Xiaodonggou, 1241 m (b) Hongfugiao, 1793 m (¢) Wuxilike-muban, 2093 m (d) Wuxilike, 2146 m

87.90°E 88.05°E 88.20°E 88.35°E

A A

47.70°N 47.85°N 48.00°N 48.15°N

47.70°N 47.85°N 48.00°N 48.15°N

87.90°E 88.05°E 88.20°E 88.35°E

(e) Wuzhiquan, 958 m (f) Jiayilemacun, 594 m (g) Dadonggou, 1076 m (h) Locations of (a) to (g)
Figure 2: In-situ snow depth observation sites using depth poles captured by the camera. There are several typical

kinds of land cover, including valley sites: (a) Xiaodong and (g) Dachonggou, conifer forest in the shade aspect hill: (b)
Hongfugiao, plain sites:(c) Wuxilike-muban, (d) Wuxilike, (g) Jiayilemacun and (h) Wuzhighuan. (h) shows these sites’
locations in the study area.
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2.2.3 Auxiliary data

In this study, the auxiliary data are acquired for the following purposes: snow density is utilized to compute snow water
equivalent (SWE) across multiple snow depth (SD) stations, air temperature data supports subsequent analyses, and digital
elevation models (DEMs) along with precise orbit data are necessary for the INSAR processing of Sentinel-1 SLC data.

ERAS5-Land is a reanalysis dataset (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview)
providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to
ERADS. The data are free and available through Climate Data Store. We obtain ERAS air temperature and snow density data
in our study area at the time (00:00 UTC) closest to the satellite pass (00:13 UTC). Here, the air temperature is defined as the
temperature of air at 2m above the surface of the land, which is calculated by interpolating between the lowest model level and
the Earth's surface, taking account of the atmospheric conditions. Temperature measured in kelvin can be converted to degrees
Celsius (<C) by subtracting 273.15. The snow density we use is derived from the ECMWEF Integrated Forecast System (IFS)
model. This model represents snow as a single additional layer over the uppermost soil level, which may cover all or part of
the grid box. The dataset has a horizontal resolution of 0.1°x 0.1°(a native resolution of 9 km) and an hourly temporal
resolution. It can be predicted that the snow density has a large spatial scale (9 km), which exceeds the spatial scale of the SAR
(tens of meters) we use to invert SWE. Therefore, in addition to the uncertainty in the snow density data, the spatial scale
mismatch may introduce errors. For Sentinel-1 SLCs’ INSAR process input data, digital elevation models (DEMs) and precise
orbit data are acquired from Shuttle Radar Topography Mission (SRTM) DEM and the ASF
(https://slqc.asf.alaska.edu/aux_poeorb/), respectively.

3 Methodology

To achieve the goal of assessing the performance of 12-day Sentinel-1 C-band InSAR for monitoring SWE changes in the
whole snow season, a series of components are described, including the theory of SWE retrieval from interferometric phase,
data processing procedures, and the phase calibration method. In particular, Sect. 3.1 explains the theory of InSAR-derived
SWE. Section 3.2 describes the workflow of stack processing Sentinel-1 SLCs to generate the interferometric phase of nearest
neighbour dates, then processing of INSAR phases to produce a time series phase changes after correction of atmospheric delay
and DEM error, and finally converting the phase change to SWE change. Section 3.3 introduces the in-situ SWE processing
method. Section 3.4 provides the phase calibration method for INSAR-derived SWE change by using in-situ measurements for

calibration.

3.1 Relationship between ASWE and A¢

The INSAR SWE retrieval algorithm considers that the signal penetration through the snow layer to the ground and the main
contribution of backscattering at the ground covered by dry snow is coming from the snow-ground interface, and the volume

scattering effect on the interferometric can be neglectable confirmed by the ground-based experiment (Matzler, 1996). The

6
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complex permittivity properties of snow, which are strongly dependent on the liquid water content, govern the propagation of
radar waves in snow. At C-band, dry snow has a typical penetration depth of 20 m (Matzler, 1996; Rott et al., 2003), while
wet snow with liquid water content is limited to a few centimeters due to a prominent rise in imaginary part of permittivity as
water content increases.

The real parts of the complex permittivity &, is a function of snow density as shown in Eq. (1) (Matzler, 1996):

& =1+ 1.60p, + 1.86p,3 (@h)
where p, is specified in g/cm?.

Because snow has a different dielectric constant from air, radar waves undergo refraction as they propagate through a snow
layer. When comparing the optical path lengths of radar waves without and with snow conditions, a path delay can be observed.
The delay arises from the change in optical path length, given by n - s (where n is the refractive index and s is the geometric
path length), caused by refraction within the snowpack and the reduced propagation velocity of radar waves in snow compared
to air. The signal delay can be derived from the geometry path illustrated in Fig. 3. Furthermore, this path delay also occurs
when there is a change in snow depth AZ,, between two measurements, with the delay being proportional to AZ,. This delay
in path length induces a differential interferometric synthetic aperture radar (DINSAR) phase difference, which can be
correlated with the change in snow depth.

By analyzing the geometric configuration presented in Fig. 3, the relationship between changes in ASWE and the differential
interferometric phase shift observed between two SAR acquisitions A¢ can be written as (Guneriussen et al., 2002)

Ap = 2k; - AZ, (cosH — & — sinzﬁ) 2)

Leinss et al. derives a nearly linear dependence between ASWE and A¢ by approximating the snow density dependent
permittivity term from (1) into (2) using a Taylor expansion under low density and small incidence angle assumptions, leading
to the simplified expression in (3) (Leinss et al., 2015):

5
Ad = 2k, -%(1.59 + ei) - ASWE @3)

where A¢ is the interferometric phase, ASWE is the change of the SWE, and the wavenumber is defined by k; = 2THWith A

being the central wavelength of the radar. The incidence angle at the air-snow interface is given by 8. The optimal « is close
to 1 for common incidence angles (< 50°). A¢ can be estimated from unwrapped InSAR phase. We utilize Eq. (3) to retrieve
SWE, with the parameter a set to 1 in this study.

The main advantage of this method is its simplicity and does not need prior knowledge, while the main limitation is the
problem of the phase unwrapping when the SWE change is larger than typically 1-2 wavelengths. Still, the wet snow absorption
during the snow melt and when large snowfalls occur will limit the ability of this method (Storvold et al., 2006). This method

is designed for dry snow conditions.
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Air
1 . Eair
AZ,
A Ground

Figure 3: Propagation path of radar wave through atmosphere with snow-free and snow-covered ground for a fixed
pixel. For conditions without snow, the radar wave travels the distance CA, while for snow-covered conditions, the
distance is DE+EA. @ is the incidence angle, 6 is the refracted angle in snow, & is the real part of the permittivity of
the snow, g, is the real part of the permittivity of the air, and AZ; is the increase in snow depth between the snow-free

and snow-covered ground images.

3.2 Sentinel-1 interferometric phase processing methods and procedures

The InSAR stack processing is performed using the NASA/JPL’s open-source software ISCE2 (https://github.com/isce-
framework/isce2) along with the time series tool MintPy (https://github.com/insarlab/MintPy). As shown in Fig. 4, the
workflow consists of three main blocks: (i) INSAR stack processing for Sentinel-1 TOPS data using ISCE (Fattahi et al., 2016),
(if) InSAR time series analysis from a stack of unwrapped interferograms to phase time-series using MintPy (Yunjun et al.,
2019), and (iii) phase calibration and SWE inversion.

In the first stage, after the co-registration, filtering, and phase unwrapping procedures, stacks of all secondary single-look
complex (SLC) images are co-registered to the reference SLC. A coregistered stack of SLCs are produced, and the burst
interferograms are merged. Merged interferograms are multilooked, filtered and unwrapped. A multi-look averaging of 15>6
(range>azimuth, similar to the following) is applied to 37 SLC data scenes, resulting in a ground resolution of 75%75 m. The
SNAPHU algorithm is chosen for phase unwrapping in ISCE2.

In the second stage, the outputs from the first stage are processed to generate a corrected phase time series, which is then
geocoded. Errors in phase unwrapping, tropospheric delays, and topographic residuals are corrected. The tropospheric delay
correction uses the PyAPS method (https://github.com/insarlab/PyAPS), which estimates differential phase delay maps based
on ECMWF's ERA-5 data. To prevent the removal of long-term trends that may impact SWE inversion, the deramp step in
MintPy is not used in our study.

In the third stage, the phase time series is calibrated using in-situ ASWE measurements. After calibration, the corrected

phase measurements are used to derive ASWE. The details of the phase calibration method are provided in Sect. 3.3.
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220 Figure 4: Flow chart of the time series INSAR Processing procedures.

3.3 In-situ SWE processing method

In-situ snow ground observations consist of measurements of snow depth and snow water equivalent (SWE).
To ensure spatiotemporal consistency with satellite overpasses, snow depth data recorded closest to the satellite observation
225 time are selected. When minor gaps exist in the snow depth time series on the required dates, missing values are filled by
averaging observations from adjacent available dates. Subsequently, snow density from the ERA5-Land dataset corresponding
to the same location and time is extracted. SWE is then estimated by multiplying the snow depth by the corresponding ERA5-
Land snow density.
For SWE data obtained from snow pillow observations, which are generally reliable but recorded every few days, daily
230 interpolation is required. A direct average from adjacent days cannot be applied due to the relatively long observation intervals.
Therefore, daily ERA5-Land SWE data closest to the satellite observation time are used as a reference. A least squares fitting
method is applied to determine a scaling factor that brings the ERA5 SWE values closer to the in-situ observations. The scaled
ERAS5 SWE data are then used to interpolate the in-situ SWE observations through a fifth-order polynomial fitting. This
approach enables the construction of a continuous daily SWE time series, ensuring a daily dataset aligned with the satellite's

235 12-day revisit cycle.
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3.4 Phase calibration based on in-situ SWE

INSAR phase measurements are relative and must be calibrated to a reference point. This reference point is essential for
correcting the unwrapped interferometric phase or ASWE in an interferometric pair. In geographical applications of INSAR,
the reference point is typically chosen such that the displacement remains unchanged or is known between the two image
acquisitions. For ASWE retrieval using InSAR, the reference point can be selected using corner reflectors with snow always
being cleaned, which offer a stable zero-phase (Nagler et al., 2022; Dagurov et al., 2020), or by taking the average of in situ
ASWE measurements (Oveisgharan et al., 2024).

However, identifying a fixed phase reference point becomes challenging, since the entire interferometric pair experiences
phase changes due to snow accumulation and ablation and using a corner reflector is also labor intensive. To address this issue,
the phase change at the reference point is assumed to be equivalent to the phase change in the whole scene image, which can
be estimated using all available in situ SWE observations. There are several factors contributing to phase bias: integer multiple
of 2w, data processing (focusing, range gating), DEM residual error, unwrapping error, atmospheric (troposphere and

ionosphere) phase delay, systematic phase calibration error, etc.

3.4.1 Phase calibration method

In this study, the ground measured in-situ SWE data are used to calibrate the A¢, rather than calibrating the ASWE
(Oveisgharan et al., 2024). The calibrated INSAR phase is then applied in the ASWE retrieval process. The interferometric
phase is a direct INSAR observation, while ASWE is indirectly derived through modeling and approximations (e.g. dependent
on local incidence angle). Calibrating the phase avoids these derivation uncertainties and accounts for incidence angle effects.
This improves the reliability of SWE estimates. For this situation, the phase calibration equations can be rewritten from Eq.
(3) as following:
a 5
A —C = 2k; -E<1.59 + 97) - ASWE @)

where C is the phase calibration constant for each interferogram. This C includes integer multiple of 2 and residual phase as
mentioned in Sect. 3.4, which is ambiguous in phase wrapping.

Assuming we have N (N = 1) number of interferometric pairs, so N number of C need to be estimated. Each

interferometric pair has several m,, number of in-situ SWE observations for the n-th (n=1, 2, ..., N) interferometric pair. We
5
sety = 2k; -%(1.59 + 95) " ASWE. Let Ag,,, denote the INSAR phase vector of the n-th interferometric pair, represented

as the m,, by 1 vector. Similarly, let y,, is the in-situ SWE observations vector, which is the m, by 1 vector for the same
interferometric pair. Bold represent vector (lower case) and matrix (capitalization). Then, we can get the following Eq. (5-11).
y=AC+ A ®)]

10



265

270

275

280

https://doi.org/10.5194/egusphere-2025-2329
Preprint. Discussion started: 11 June 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

N (6)
m = ;mi

y=0m Ymy - Ym)' (7)
G ) L (8)
Vi, O S ¢ 9)
0 vy, O :
A= 0 vy, :
: : : 0
0 e 0 vy, XN
C = (Cl CZ CN)Tle (10)
Ap = (APm;, APm, - Ad)mn)Tm><1 (11)

We use the least squares method to calculate C. For the y = AC + Agp, the estimated C can be calculated by least squares
solution as (12):
C=A"D)A"(y - ¢) (12)
Each interferometric phase image is calibrated based on its estimated C, (n = 1,2,3 ..., N). The least squares method

provides an unbiased estimate of C. Specially, when only nearest INSAR pairs are considered, A is a diagonal matrix with v,
blocks that are being independent; thus, the solutions to each C,, can be derived separately. In this scenario, for the n-th INSAR

pair, the estimated C,, represents the average value of all calibration parameters at different locations:

k=mpy
— - 1 1
G, = (vmnTvmn) 1vmnT(ymn - A¢mn) = m_(_l _1)Tmn><1(ymn - A¢mn) = m. z (Apx — yi) (13)
n n &=

Only the nearest INSAR pair is considered because the temporal baseline in our study is already 12 days, which is relatively
long compared to the rate of snow variation. Using longer baselines, such as 24 or 48 days, is less beneficial for phase
unwrapping. However, if shorter temporal baseline data become available in the future, redundant interferometric pairs should
be considered to estimated C, where we can not calculate C,, from Eq. (13). Instead, we must employ the least squares method
from Eq. (12) to obtain a solution where matrix A is no longer diagonal.

For example, if there are n SAR acquisitions, then n — 1 adjacent interference pairs can be formed. Considering all

2

interferometric pairs, the total number of interference pairs is (n

) = "(nT_l) In the case of three scenes (1%, 2" and 39, there

are three combinations of interferometric pairs, and theoretically C;3=C;,+C,3, where C;; represents the calibration parameter
between the i-th and j-th SAR acquisitions. The corresponding relationship among these interferometric pairs in the above

three-scene case can be formulated explicitly, as shown in Egs. (14) to (19). In this case, Ag; is the INSAR phase vector for

the interferometric pair between the i-th and j-th SAR scenes, represented as the m;; X 1 vector corresponding to the m;;
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number of in-situ SWE observations. Similarly, y;; represents the in-situ SWE observations vector, which is the m,, x 1 vector

for the same interferometric pair.

y=AC+ A (14)
M = mlz + ng + m13 (15)
y=01z Y23 Y13)',,, (16)
v=(-1 .. -D7 o (17)
V12 0 0 (18)
A= 0 Va3 0
0 0 V13 Mx3
C=(Cz Cy3 C13)T3X1
Agp = (Ap, Adys A¢13)TMX1 (19)
Substituting Egs. (15-19) into (14), we obtain (20).
V12 (ZV 0 Ci2 Ay,
Y13 Mx1 0 0 V13 Mx3 C13 3x1 A¢13 Mx1
Since C is a systematic calibration parameter, it follows that C;5 = C;, + C,3. Therefore, Eq. (20) can be rewritten in the
following:
Y12 vy, O c Ay,
<}’23> = ( 0 1723) ( C“) + <A¢23> (21)
Y13/ yx1 V12 V237 yxo 2372x1 A3 Mx1

When the redundant interferometric pair C,5 is considered, the number of equations to solve C increases, i.e., the elements in

the non-diagonal area of the above A matrix will have non-0 values.

3.4.2 Phase calibration based on different numbers of selected points

To validate our phase calibration method (in Sect. 3.4.1) and test the validation accuracy under different conditions, we adopt
a phase calibration method based on different numbers of selected points. According to each interferometer pair's actual in-
situ ASWE data, only a portion of ASWE data is selected as calibration points, which means they are used to calculate the
calibration parameters, while the other ASWE data are used for validation only. Because the total number of stations that can
be used for calibration is small (in our case, the maximum is 13), the point selection criteria is not based on the properties
corresponding to the data (such as coherence, elevation, etc.), but Monte Carlo random selection of in-situ ASWE data multiple
times (100) is adopted.

12
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3.4.3 Partial phase calibration for the integer multiples of 2x

The calibration parameter (C) is considered to consist of two components: the integer multiple of 2 and the residual part less
than 2m. Three cases are tested to investigate the influence of different components of the calibration parameter on the ASWE
retrieval: no phase calibration, calibration using only the integer multiple of 27, and calibration using the full parameter. The
second strategy means that only the integer multiple of 2z within the calibration parameter is used, i.e., full calibration
parameter subtracts its modulo 27, Specifically, if C is with (—m, @), C = 0; if C < —m, it is replaced by —27; if C = =, it is

replaced by 2m. This approach removes the integer phase while ignoring the residual phase.

4 Results

This section shows the unwrapped phase and coherence of each InSAR pair in two snow seasons firstly. Then the retrieved
time series scene-wide cumulative SWE is described, followed by the validation results, which compare retrieved and in-situ
ASWE, and then assess the impact of using different numbers of calibrated points on validation accuracy. Finally, the validation

of cumulative SWE and the comparison between the in-situ and retrieved time series cumulative SWE at each station is shown.

4.1 Intermediate results of INSAR processing

During the InSAR processing (Section 3.2), some intermediate results are obtained, including the unwrapped phase and
coherence of each INSAR pair in two snow seasons, as shown in Figs. 5 and 6. During the snow season, some InNSAR pairs
show relatively high coherence, corresponding to the subfigures 7 to 10 in Fig. 5, and 6 to 11 in Fig. 6. These relatively good
interference pairs will be mentioned in the subsequent validation of results in Fig. 11. The areas with higher coherence
correspond to places with more robust and accurate unwrapped phases. Lower coherence corresponds to more discontinuities
in unwrapped phase distributions, and more isolated areas appear in the connected component graph. These areas may increase
the errors in the inversion results and result in adverse effects.

Based on the SWE and air temperature time series changes observed at the in-situ sites (see Fig. 7), several patterns can be
identified for the snow season. As shown in Fig 7(a), a snowfall event was recorded in September 2019, but the corresponding
interference pair dates (subplot 0 of Fig. 5) correspond to a period before and after the snowfall, resulting in little impact on
the interference pair by snowfall and snowmelt. Then, up until mid-October, no snowfall is observed. During this time, changes
in phase and coherence are likely caused by atmospheric variations driven by gradually decreasing temperatures, as indicated
in subplots 1 and 2 of Fig. 5, in which decorrelation and obvious changes in the unwrap phase begin to occur. Snowfall starts
in mid-October, leading to a continuous increase in SWE. This results in a large area of low coherence, primarily due to the
impact of snowfall, as shown in subplot 3 of Fig. 5. In early November, temperatures rise above 0 <C, leading to a snowmelt
process. This causes coherence to remain low, as illustrated in subplot 4 of Fig. 5. A similar low coherence remains in subplots

5 and 6 of Fig. 5, this is likely due to heavy snowfall events and temperature fluctuations around 0 <C, causing an unstable
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snowpack state. The snowpack becomes more stable later in the snow season, accompanied by consistently low temperatures,
mainly around -10 <C. During this period, coherence is high, as shown in subplots 7 to 12 of Fig. 5. After mid-February of the
following year, rising temperatures lead to a snowmelt process. The presence of wet snow significantly reduces coherence, as
illustrated in subplots 13 to 17 of Fig. 5.

We make a note here that, large snowfall events can cause temporal decorrelation, leading to phase unwrapping errors.
Under this condition, the SWE retrieval method is not recommended. For example, as shown in Fig. 7(a), the cumulative SWE
increases by about 100 mm from 4 Nov 2019 to 28 Nov 2019 over one of the high-elevation stations, which exceeds the SWE
changes detection limit (approximately 30 mm for C-band, corresponding to a 2m phase change). This suggests that phase
ambiguity may occur. During this period, low coherence is shown by dark areas in subplots 5 and 6 of Fig. 5, which likely
leads to unwrapping errors. These errors are visible as isolated unwrapped phase patches.

The following year, a similar pattern is observed (Fig. 7(b)). The coherence is low from mid-to-late September to late
November due to the snowfall and the air temperature which is not continuously below 0 <C. Lower coherence corresponds to
larger unwrap phase changes. High coherence is recorded during low temperatures and stable SWE, as shown in subplots 6 to
11 of Fig. 6. In contrast, coherence decreases during the final snowmelt period when temperatures rise, as shown in subplots
12 to 16 of Fig. 6. Moreover, the coherence pattern may reveal human activities. The black line on the coherence map in
September may be caused by human grazing activities. The road's coherence will recover after a period of snowfall, which

may be related to the artificial snow removal in the city.
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Figure 5: The unwrapped phase (top panel) and coherence (bottom panel) data from September 5, 2019 to April 9,
2020, every 12 days.
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Figure 7: Observed time series in-situ SWE and air temperature change at the Wuxilike station from (a) 2019 to 2020 and (b) 2020
to 2021. (The vertical black dashed lines correspond to satellite observation dates.)
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4.2 Spatiotemporal distribution/variations in cumulative SWE

Large spatial-scale cumulative SWE changes in the two snow seasons at the Altay, every 12 days, at a 75%75m spatial
resolution, are mapped using INSAR and Sentinel-1 following the above INSAR processing (see Figs. 8 and 9). A comparison
of Figs. 8 and 9 shows that the processes of spatial variation for accumulated SWE in both the 2019-2020 and 2020-2021
seasons are similar. In both seasons, the SWE shows a gradual increase from September to mid-March, peaking in March,
followed by a decrease in the same regions from late March to early April. However, differences are also observed. In the
second year, the spatial extent of maximum SWE cumulation was smaller than in the first year. Additionally, the location and
the range of the region where SWE reached its peak is different between the two years.

During the 2019-2020 snow season, SWE cumulation is in a moderate pattern in the early months, from September to
November, SWE increases from 0 mm to approximately 50 mm. As the season gets into the late January, significant cumulation
is observed in areas A and B, located at higher elevations, while the lower-elevation area C in the southwest shows a relatively
smaller increase. By mid-March, SWE reaches its maximum spatial extent, with the most notable cumulations still emerging
in the higher elevations, areas A and B. A rapid decline follows in late March and early April, especially in region D, where
the SWE declines significantly from approximately 120 mm on March 15 to around 25 mm.

A similar temporal process of SWE cumulation can be found in the 2020-2021 season, though with differences in the spatial
variations. Early cumulation trends are as well as those of the previous year, with SWE rising to approximately 50 mm by late
November. However, uneven increases appear across the study area from December to February, which may be explained in
the influence of meteorological conditions and topographic factors. The most significant rise in SWE is concentrated in area
A, where the peak cumulation in spatial extent is reached on March 10, 2021. A rapid SWE decrease in late March is observed
in area B, which corresponds to the same location as area D from the previous season, where SWE declines from approximately
100 mm to around 50 mm. These temporal and spatial differences reflect the uneven distribution or rate of change of snow
accumulation and melting processes, which is influenced by various factors during the snow season, such as differing snowfall

patterns, topography, and meteorological conditions.
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4.3 Validation of the retrieved SWE
4.3.1 Comparing Sentinel-1 retrieved ASWE with in-situ ASWE

As shown in Fig. 10, the retrieved ASWE, with a 12-day temporal baseline from September 5, 2019, to April 8, 2020, and
September 11, 2020, to April 3, 2021, are validated against with all in situ SWE observations, with an RMSE of 15.5 mm
(R=0.48, p-value<<0.05). Here, we use a 5>5 pixel averaging on retrieved ASWE, corresponding to a spatial resolution of
375>375 m. The high coherence points (red) are closer to the 1:1 line with higher accuracy, while the lower coherence ones
(purple) are affected by the decorrelation error sources and thus more scattered away from 1:1 line. These results prove that
INSAR-derived SWE using Sentinel-1 with a 12-day revisit time is able to estimate the SWE at Altay, indicating that the
importance of higher coherence is one of the key factors to obtain good retrieval results. The validation results show minor

differences depending on the choice of multi-pixel averaging for the retrieved SWE.
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Figure 10: Comparison between the in-situ SWE changes in 12 days and the Sentinel-1 INSAR retrieved SWE changes at Altay in
2019-2021. (The color of the points corresponds to the coherence.)

Asiillustrated in the previous section, there are some differences in spatiotemporal cumulative SWE in the two snow seasons.
To examine whether the differences in spatiotemporal cumulative SWE between the two seasons introduce errors or affect
retrieval accuracy, the total validation results are divided by year, with each time series INSAR pair assessed separately (see
Fig. 11). The validation results remain still reliable, with slightly better performance when analyzed separately for each snow

season rather than combined. This indicates the stability of the retrieval method across different snow seasons.
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The retrieved ASWE are validated against in-situ ASWE with an RMSE of 15.92 mm (R=0.47, p-value<<0.5) in 2019-
2020,14.79 mm (R=0.51, p-value<<0.5) in 2020-2021. The points that belong to higher coherence (circled) INSAR pair are
closer to the 1:1 line, showing a good agreement in the retrieved and in-situ ASWE. While it turns to wet snow, retrieved
ASWE has a shorter dynamic change range than in-situ ASWE values. This is demonstrated by the red points (from March to
April), which have a total dynamic range of around 120 mm of in-situ ASWE but 20 mm in retrieved SWE in Fig. 11 (a), and
have a total dynamic range of around 100 mm in in-situ ASWE but 40mm in retrieved ASWE in Fig. 11 (b). This may be due
to the uncertainty of the observed and retrieved SWE during the melting process of snow, suggesting the retrieval range is
saturated.

2019-2020 2020-2021
20190905-20190917 20200911-20200923
e : 20100017-20100020 | V=144, r=0.47, p=0.00 e : 20200823-20201005 | N=97, r=0.51, p=0.00
o 2019092020191011 |RMSE=15.92, RRMSE=13.16% 401 O oa01005.20201017 | RMSE=14.79, RRMSE=15.52%
@ 20191011-20191023 Bias=-0.10, StdDev=15.92 ,'/ @ 20201017-20201029 Bias=1.68, StdDev=14.70
20 20191023-20191104 §ed @ 20201029-20201110
—_ 20191104-20191116 % — 20201110-20201122 o ~
= 20191116-20191128 @ = 20 © 20201122-20201204 L) g’ *
E © 20191128-20191210 °® £ © 20201204-20201216 & o "’L LX)
it O 20191210-20191222 & Lo o o O 20201216-20201228 0 90 1
= 207 @ 20191222-20200103 o = O 20201228-20210109 @ -0
0 Q 20200103-20200115 € =00 o 0 O 20210109-20210121 ® . 9 o
< 20200115-20200127 @ \lé\o < O 20210121-20210202 & ’
8 20200127-20200208 ® g ,\,’5 ¢ '8 0 20210202-20210214 .‘é ®
> 0 20200208-20200220 " ! L > 20210214-20210226 ,,B ]
2 20200220-20200303 op % © 2 » 20210226-20210310 P ° ®
H ® 20200303-20200315 “ .Q;"O = @ 20210310-20210322 o °®
= ® 20200315-20200327 a3 S _5p | @ 20210322:20210403 °
T _pp{ @ 20200327-20200408 P o bl I P
o [ - 7 [ ] ® . T e, ° ®
c c ®
] E= L L
c c
@ [}
0 —40 n —40
60 _60
—-60 —-40 =20 0 20 a0 60 —-60 —40 =20 o] 20 40
Observed in-situ ASWE(mm) Observed in-situ ASWE(mm)

Figure 11: Comparison between the in-situ SWE changes in 12 days and the Sentinel-1 INSAR retrieved SWE changes at Altay in
the snow seasons of (a) 2019-2020 and (b) 2020-2021. (The color of the points corresponds to each INSAR pair. The points with higher
coherence in the whole INSAR pair scene are circled.)

4.3.2 Validation results under different numbers of selected points

The calibration in the INSAR-derived SWE is necessary because it’s hard to find a stable point at the ground owing to the
whole scene being covered by snow. Each INSAR pair needs to be calibrated. The calibration parameters can be chosen using
all or part of the in-situ SWE observations. Various strategies of point selection may generate varied validation results. Due
to the limited observations (some InNSAR pairs only have one in-situ SWE observation; see Fig. 12), we do not choose
calibration points based on properties (e.g., elevation, air temperature, snow density). Therefore, the strategy is conducted
based on the Monte Carlo (100 times) randomly selected number of points for calibration.

Based on the method introduced in Section 3.4.2, part of the SWE observations in each INSAR pair in 2019-2020 are used

to derive the calibration parameter. Then, the rest of the SWE observations are used to validate the retrieved SWE after
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calibrating each InSAR pair using the derived calibration parameter. As shown in Fig. 12, the maximum number of available
SWE observations in all INSAR pairs in 2019-2020 snow season is 13. Hence, the maximum number of points used for
calibration is limited to 10 to ensure that at least 3 points remain for validation. One hundred tests based on the random point
selection method with different numbers of points are carried out, and the following validation results are shown in Figs. 13
and 14.
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Figure 12: The number of in-situ ASWE in each InSAR pair in 2019-2020

Validation results under different numbers of selected calibration points after 100 Monte Carlo random tests are presented
in Fig. 13. The validation shows that accuracy changes as the number of points changes. In particular, accuracy arises as the
number of calibration points increases from 1 to 5 at first, then stabilizes when the number of calibration points varies between
5and 7. However, as the number of calibration points increases beyond 7, the rapid reduction in validation points is likely the
main reason for a bad validation result.

This trend is further illustrated in a scatter plot comparing the in-situ SWE changes with the Sentinel-1 InSAR-derived SWE
changes for one representative realization out of the 100 trials under different numbers of selected calibration points (from 1
to 10), see Fig. 14. The results show good validation performance when using 5, 6, or 7 calibration points. This finding suggests

that selecting at least half of the available SWE values for calibration can yield reliable INSAR-derived SWE estimates.
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Figure 13: Variation of RMSE, Pearson correlation, and p-value with the number of points used for calibration after 100 Monte
Carlo random point selection tests. (The two ends of the long line represent the range, and the ‘x> symbol in the middle represents
455  the average value over 100 times.)
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Figure 14: Comparison between the in-situ SWE changes and the Sentinel-1 InSAR retrieved SWE change under different numbers
of selected calibration points, from 1 to 10, in one realization.
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4.4 Comparing Sentinel-1 retrieved cumulative SWE with in-situ cumulative SWE

All of the time series retrieved ASWE are used to calculate the retrieved cumulative SWE at each date from the start date of

our satellite’s observation date, which can be expressed as
t

SWE((t1,,) = SWE(t,) + z ASWE(t;, t;11) (22)

tji=to

where t, is the start date (September 5, 2019 or September 11, 2020), SWE (t;,,) is the cumulative (or absolute) SWE on the
date of t;,,, and ASWE(t;, tj1,) = SWE(t;4,) — SWE(Z;). For example, the cumulative SWE at 20190929 (yyyymmdd) is
the summation of the cumulative SWE at the initial date of 20190905, ASWE(20190905,20190917) , and
ASWE(20190917,20190929).

It should be noted that discrepancies in initial SWE values may exist when comparing cumulative SWE from in-situ
measurements and that derived from InSAR observations. To ensure a consistent basis for comparison, an initial value
alignment is performed before the validation analysis. On the one hand, the satellite-derived SWE is referenced to the first
Sentinel-1 acquisition, where the initial SWE is set to zero. However, at the same time, a few in-situ stations may record small
but nonzero SWE values due to early snowfall events. On the other hand, for most stations, no snowfall is recorded on the date
of the first acquisition or even several subsequent acquisitions, so the measured cumulative SWE remains zero. In contrast, the
INSAR-derived cumulative SWE may show nonzero values at the same acquisition due to atmospheric effects or other factors
accumulating over time. As a result, inconsistencies in initial SWE values may also occur at later dates, even when no snowfall
is observed. This discrepancy introduces a constant offset when comparing the retrieved cumulative SWE with in-situ data.
To eliminate this offset and ensure consistency in the initial comparison, the satellite-derived cumulative SWE is adjusted to
match the first available in-situ cumulative SWE observation on the same date. This alignment procedure is then applied to all
subsequent satellite-derived cumulative SWE values.

4.4.1 Validation of retrieved cumulative SWE

As shown in Fig. 15, the retrieved cumulative SWE is validated against in situ SWE observations after excluding wet snow
conditions, with an RMSE of 36.5 mm (R=0.63, p-value<<0.05). After this exclusion, some underestimated and scattered points
deviate significantly from the 1:1 line. Most of these points correspond to high-elevation stations such as Wuxilike, Wuxilike-
Muban, and Tollheit. The locations and elevations of these stations can be found in Fig. 2, and the cumulative SWE
underestimation is illustrated later in Fig. 17 and Fig. 18. Tollheit is not shown due to the limited number of valid data points.

Improved validation results are obtained by excluding these underestimated points, with an RMSE of 28.4 mm and R=0.78.
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Heavy snowfall (around 100 mm) at the Wuxilike station (and nearby Wuxilike-Muban) in early Nov 2019 lead to low
coherence and phase unwrapping errors (as in Fig. 5 and Fig. 7). This leads to ASWE underestimation errors propagating
through the time series, so these stations are excluded from further validation.

The bimodal scatter distribution observed in the validation results is mainly attributed to the error propagation in the time
series retrieved ASWE. Since cumulative SWE is calculated by summing ASWE from each interferometric pair, any
overestimation or underestimation of ASWE in a single pair propagates through the subsequent cumulative SWE, leading to
deviations (to be illustrated in detail in Fig. 21 and Fig. 22). As a result, the scatter tends to split around the 1:1 line, forming
a bimodal pattern. Nevertheless, despite this apparent bimodal scatter distribution. In general, the higher in situ SWE values
generally correspond to higher retrieved SWE values, which means the overall trend of the retrieved cumulative SWE remains
consistent with the in-situ measurements.

Here, the wet snow points (light grey) are excluded. These points correspond to the end of the snow season (early March
and later), when air temperature is above 0 <C, but the snowpack has not completely melted. Therefore, data from March 3,
2020, and from March 10, 2021 are removed, according to the SWE and air temperature time series shown in Fig. 7. This
exclusion is primarily due to the limited penetration depth of C-band radar signals in wet snow, which restricts the ability to
retrieve reliable SWE estimations under such conditions. To better understand this limitation, the physical basis of wet snow

interaction with radar signals is briefly discussed below.
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Figure 15: Comparison between the Observed in-situ SWE and the Sentinel-1 InSAR retrieved cumulative SWE at Altay in 2019-
2021.

The penetration depth of a medium &, is related to the volume absorption coefficient x, as
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1
b= (23)

K, is related to the effective dielectric constant of the wet snow ¢, as

Kq = %Tlm{\/s_ws} (24)
The permittivity of wet snow at C-band (5.405GHz) can be given by the following equations from the modified Debye-like
model (Hallikainen et al., 1986):

Ews = Ews — JEws (25)

ews' = 1+ 1.83p; + 0.02m1°1> + 0.0539m131 (26)

£,s" = 0.0321ml3?
where p; is the snow density (g/cm®), and m,, is the volume fraction of liquid water in the snow mixture (%).

As shown in Fig. 16 (A), significant differences exist in the interaction mechanisms between electromagnetic waves and
dry snow versus wet snow. Electromagnetic waves interact primarily with the surface layer of wet snow, resulting in an increase
of the scattering phase center compared to dry snow. This leads to a loss of coherence between the wet snow signal and the
previous snow-free observation. Particularly at the end of the snow season, the C-band electromagnetic waves can not penetrate
the snow to the ground with the increase of m,, caused by the snow melt process. For example, in Fig. 16 (B), a penetration
depth &, of approximately 5 cm is observed when m,, is 6%, but usually the snow depth is larger than 20 cm. Under these
conditions, errors will be introduced if the retrieval algorithm (3) for dry snow scenarios is applied. Therefore, the wet snow

data are excluded during the validation.

0.35
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Figure 16: (A) Propagation path of radar wave in dry snow and wet snow, and (B) penetration depth of wet snow at the frequency
of 5.405 GHz and the snow density of 0.2 g/cm?.
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4.4.2 Comparing Sentinel-1 retrieved time series cumulative SWE with in-situ cumulative SWE

The time series of retrieved cumulative SWE is evaluated at each in-situ SWE station (Figs. 17 and 18, for each year,
respectively). Good agreements are shown between the in-situ and retrieved cumulative SWE at some stations, such as stations
(6), (8), and (14) in Fig. 17 and station (15) in Fig. 18. Nevertheless, an overestimation of about 20 to 80 mm is exhibited by
the satellite retrieval at some stations (i.e., the blue in-situ SWE line is lower) in two snow seasons (stations (13) and (17)). In
contrast, station (12) is underestimated by about 80 mm in mid-December (i.e., the blue in-situ SWE line is higher) in two
snow seasons. These overestimation and underestimation for two consecutive years may be related to the inherent environment
of each site. For example, underestimation occurs at station (12), located in relatively higher elevations (around 2146 m), while
overestimation is observed at stations (13) and (17), situated in lower elevations (around 1076 m and 730 m, respectively).
These differences may be attributed to variations in local slope, surface conditions, and nearby mountainous areas, which
together affect the interferometric phase signal and introduce biases in the retrieved SWE. At the Wuxilike station (Fig. 17(9)),
heavy snowfall is recorded from early November to early December. Although an increasing trend is captured in the retrieval,
a notable underestimation remains, owing to decorrelation and phase unwrapping errors caused by heavy snowfall. This tim-
series result is consistent with the above temporal decorrelation analysis (Fig. 5 and Fig. 7) as well as the underestimation of
the cumulative SWE in Fig. 15.

However, some sites show different estimations (overestimation in one year and underestimation in another year) in two
years. This phenomenon may be related to the different snow cumulations over the two years. Another reason might be that
the errors will accumulate as time passes. This means one pair of overestimations and underestimations will propagate on the
following cumulation estimations. Moreover, the overestimated station may become underestimated after the phase calibration
process, or vice versa. The choice of pixel averaging can affect the final retrieval results, too. For example, at station (14)
Xiaodonggou in Fig. 17, the retrieval accuracy improves as the averaging window size increases. This may be related to the
mountainous terrain rather than the uniform plain surrounding the station, where a larger averaging window may have more
impact on the retrieval results. Despite some overestimation and underestimation, the retrieved SWE trends are generally
consistent with in-situ measurements across all stations, which agrees with the findings of Shadi et al. (2023), who suggest

that the main reason for these discrepancies is likely related to phase unwrapping errors and phase ambiguities.
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Figure 17: Time series of in-situ and retrieved cumulative SWE using Sentinel-1 interferometric phase for different stations in Altay
during the 2019-2020 snow season. (The in-situ cumulative SWE is represented by blue lines, while the retrieved cumulative SWE
is shown by six different colored lines, each corresponding to a different spatial scale. Specifically, the retrieved SWE values are
calculated as the average SWE within a window centered at the station’s latitude and longitude, with window sizes of 11, 33, 55,
7x7, 959, and 1111 pixels, respectively. The number in the upper right corner is the elevation of the site. The same color scheme

apply to the following Fig. 18 for the 2020-2021 snow season.)
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Figure 18: Time series of in-situ and retrieved cumulative SWE using Sentinel-1 interferometric phase for different stations in Altay
during the 2020-2021 snow season.
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5 Discussion

Good inversion performance is demonstrated in Section 4 in general, but some inconsistencies between retrieved and
measured SWE can be seen, which are yet to be further investigated. For example, the abnormal points in the left area of Fig.
10, which are far from the 1:1 line, and the overestimation and underestimation of retrieved cumulative SWE in Figs. 15 and
16. In this section, we explore why different points show varied accuracy and what the optimal occasions of this retrieved
method are by using available data on meteorology and snow properties. Then, the validation of cumulative SWE and ASWE
at the same site is shown next with the scatterplot. At the end of this section, the effects of partial phase calibration on the

inversion result are studied.

5.1 Analysis of multiple factors influencing the retrieval of ASWE

This section investigates the influence of various factors, including coherence, air temperature, elevation, slope, snow depth,
and snow density, on the validation of retrieved ASWE, as illustrated in Fig. 19. Abnormal points, marked by rectangular
frames in Fig. 19 (1), represent values where the in-situ ASWE is less than -40 mm while the retrieved ASWE exceeds -40
mm. As seen in Fig. 11 of Section 4.3.1, these points predominantly occur in the snowmelt season from March to April. During
this period, the snow depth is primarily less than 20 cm, and snow density values in Fig. 19 (6) are relatively high (red and
orange points greater than 200 kg/m3. This is consistent with the shallow snow and high density observed in ERA5 during the
snowmelt season.

For points outside the abnormal area, those with lower coherence (purple) become more scattered, as shown in Fig. 19 (1).
As shown in Fig. 19 (2), the lowest temperature (purple) values cluster around the 1:1 line. Except for the rectangular frames,
points at lower elevations (Fig. 19 (3)) appear more accurate, and red points at high altitudes tend to show an underestimation.
When both ASWE inversion and in-situ measurements are positive, snow density remains relatively constant (around 160
kg/m?). However, when ASWE is negative, snow densities are more varied due to snow melting, showing both lower values

(purple points at 120 kg/m3 and higher values (red points at 200 kg/m3.
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Figure 19: Analysis of multiple factors influencing the retrieval of ASWE. (Each sub-figure is colored based on different properties)

Additionally, data is removed based on specific thresholds for each factor to assess the impact on inversion results, as
summarized in Table 1. For coherence, the threshold for removing low values was gradually increased from 0.3 to 0.6 (with
no points having coherence below 0.2). After removing low-coherence points, inversion results show minimal changes, with
a slight decrease in RMSE and correlation. This may be because only 22% of points have coherence below 0.6, and more than
half (53%) have coherence above 0.9. When filtering higher temperature values (from 0 <C to -20 <C, decreasing by 5 <C),
significant improvements are observed after removing points above -20 <C. The correlation increased to 0.77, and RMSE
decreased to 9.8 mm. These points, corresponding to temperatures below -20 <C, are from four InSAR pairs collected from
November to January during the dry snow season. For elevation and slope, the inversion results after limiting these ranges may
not be entirely reliable, as the data distribution is not balanced (see histograms in Fig. 19 (c) and (d)), and the total number of
data points is relatively small. Elevation and slope are intrinsic to the site, meaning each station corresponds to specific values
of elevation and slope. Regarding snow depth, we test removing points with thick and shallow snow depths, retaining points
with snow depths in a certain range, and removing thick snow (from 20 cm to 140 cm, increasing by 20 cm). The best results
are obtained by retaining only points with snow depths between 0 cm and 20 cm, where the R-value reached 0.72 and RMSE
was 12.1 mm. This could be attributed to the larger proportion of shallow snow (below 20 cm) in the dataset (38%, as shown
in Fig. 19), compared to other depth ranges. For snow density, limiting the snow density in the scatter plot to between 150
kg/m3 and 200 kg/m3 will improve the results with an RMSE of 0.56 and RMSE of 12.24 mm.
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605 Table 1: The validation results based on filtering of different parameters

610

615

EGUsphere\

1) coherence(%bo) 2) Air temperature(°C)
filter outrange RMSE(mm) R  Total number | filteroutrange @ RMSE(mm) R  Total number
<0.3 15.23 0.44 230 >0 15.45 0.49 236
<0.4 14.86 0.41 217 >-5 15.7 0.47 218
<0.5 14.86 0.40 205 >-10 15.42 0.41 197
<0.6 14.97 0.35 195 >-15 15.33 0.40 105
>-20 9.54 0.77 33
3) Elevations(m) 4) Slope(9
filter outrange RMSE(mm) R  Total number | filteroutrange = RMSE(mm) R  Total number
>2000 14.43 0.56 199 >0 16.59 0.44 99
>1500 14.69 0.54 177 <0 15.85 0.45 150
>1000 14.55 0.37 105 remain range
>600 11.93 0.46 26 -5<slope<5 14.74 0.43 121
-3<slope<3 11.78 0.54 90
-1<slope<1 12.44 0.50 46
5) Snow depth(cm) 6) Snow density(kg/m3")
remainrange RMSE(mm) R Total number remain range RMSE(mm) R  Total number
10<SD<80 11.79 0.60 111 150<density<200 12.24 0.56 156
20<SD<80 12.34 0.56 74 180<density<200 15.55 0.65 22
20<SD<40 12.62 0.56 46
40<SD<60 12.64 0.55 23
0<SD<20 12.06 0.72 75 Original validation
0<SD<40 12.28 0.65 121 RMSE(mm) R  Total number
0<SD<60 12.34 0.65 144 without filtering 16.15 0.44 248
0<SD<80 12.2 0.66 149
0<SD<100 12.39 0.64 152
0<SD<120 12.81 0.62 155
0<SD<140 14.17 0.54 156

In conclusion, better validation results can be obtained by filtering temperature to below -20 <C, snow depth to 0-20 cm,

and snow density to 150-200 kg/m=3in this study. However, the coherence, elevation, and slope limits do not significantly

improve the inversion results. These findings are likely influenced by the distribution of properties. To describe the effect of

uneven data distribution, histograms for each attribute are plotted (Fig. 20). More than half of the coherence values are in the

range above 0.9, 40% of snow depths are in the 0-20 cm range, snow density is concentrated between 150-160 kg/m3and 68%

of temperature values located between -20 <C and -10 <C. Elevation and slope angles are less continuous due to the limited

station distribution. These characteristics may suggest that similar properties are required to achieve inversion results

comparable to ours.
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Figure 20: Histograms of various attributes of the validation point
5.2 Delta and cumulative in-situ SWE and retrieved SWE comparison at each station

Based on the distribution of in-situ and retrieved ASWE results validation at each station, the comparison data are classified
into two groups. The classification in Fig. 21 shows a more concentrated distribution along the 1:1 line, while a more dispersed
pattern is shown in Fig. 22.

The accuracy of cumulative SWE is directly influenced by the accuracy of ASWE, since cumulative SWE is calculated by
accumulating ASWE values. For example, when ASWE is close to the 1:1 line, the cumulative correlation is also observed to
be close to the 1:1 line (blue points in Figs. 21 (a) and (d), (c) and (f)). However, as cumulative SWE increases, it tends to
scatter more from the 1:1 line, showing a consistent trend of overestimation or underestimation through error propagation
based on the time series accumulation. In contrast, there are cases where the ASWE’s validation does not show a good
relationship, yet the cumulative SWE does, as shown in Figs. 22 (d) and (e). Similarly, with higher cumulative SWE values,
data points increasingly deviate from the 1:1 line. Factors such as removing tropospheric error during processing may
contribute to these discrepancies. Additionally, the reason may be variations in the station environment and errors in the in-
situ data observations. The cumulative SWE is more prone to random error, which propagates to other pairs.

Furthermore, the scattered point distribution for different years at the same station exhibits similarities. This consistency
suggests that patterns of overestimation and underestimation in delta and cumulative values may stem from the station’s

properties or observation biases.
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Figure 21: Comparison between the in-situ SWE changes and the Sentinel-1 InSAR retrieved SWE changes at three stations in Altay.
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Figure 22: Comparison between the in-situ SWE changes and the Sentinel-1 InSAR retrieved SWE changes at the other three
stations in Altay

5.3 The effects of partial phase calibration on validation of retrieved ASWE

Based on the method described in Section 3.4.3, the effects of partial calibration on the validation of retrieved ASWE are tested.
The results are shown in Fig. 23. In case (A), where no calibration is used, the validation shows a poor agreement, with no
significant correlation (R = 0.09). In case (B), applying only the integer multiple of 2x part, the validation improves
substantially with an RMSE of 17.4 mm (R=0.36). In case (C), using the full calibration parameter, futher improvement is
observed with an RMSE of 14.9 mm (R=0.52). Note that a total of 233 points are used in this validation, slightly fewer than
the 241 in Fig. 10, due to the removal of a few outliers.

These results demonstrate that our phase calibration is essential for improving the accuracy of the InSAR-based ASWE
retrieval. While the integer multiple of 2r accounts for the main portion of the phase error, the residual phase (that is caused
by data processing errors, DEM residual error, atmospheric delays, systematic phase calibration error, and etc) still has a
noticeable effect. Comparison to case (B) and (C) shows lower RMSE and bias, as well as an higher correlation, confirming
the importance of calibrating the residual phase component. It can also be observed that the overall performance is improved
through phase calibration, while some points with initially good agreement deviate from their previous alignment. In

conclusion, the best accuracy can be achieved when the full calibration parameter is applied.
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Figure 23: Comparison of the validation results for in-situ ASWE changes in 12 days under different calibration strategies: (A) no
calibration, (B) calibration using only the integer multiple of 2z part, and (C) using the full calibration parameter.

6 Conclusions

In this paper, Sentinel-1 time series data collected every 12 days from 2019 to 2021 are used to retrieve changes in SWE
(ASWE) and cumulative SWE throughout the entire snow season. A specific frame is selected to include 15 in-situ stations
over Altay. An adequate correlation (R=0.48) is observed between the retrieved 12-day ASWE and the in-situ values, with an
RMSE of 15 mm over two years. The RMSE slightly improves in the second year, showing values of 14.79 mm (R=0.51) for
2020-2021. 1t should be noted that inversion results are not filtered for low coherence or high temperatures above 0°C across
the full snow season. Considering that the nearly global consistent coverage offered by Sentinel-1’s 12-day repeat-pass imagery,
the SWE inversion using Sentinel-1 and the INSAR method presented in this study, along with the analysis of multiple factors
(such as coherence and air temperature) impact on the accuracy of this retrieval technique, can be applied to other snow-
covered regions.

After excluding wet snow points, the retrieved cumulative SWE shows reasonable performance, with an RMSE of 36.5 mm
(R=0.63). Further improvement is achieved by excluding high-elevation stations affected by early-season heavy snowfall that
cause phase unwrapping errors, reducing the RMSE to 28.4 mm and increasing R to 0.78. The observations and inversion of
time series cumulative SWE show consistency at several stations, albeit some stations indicate overestimations or
underestimations. The scene-wide coherence, unwrapped phase, and cumulative SWE are displayed in the snow season from
2019-2021. The similarities of snow changes in two years can be found in these displays.

Moreover, a novel phase calibration method is introduced and validated by varying the total number of in-situ ASWE data
for calibration. The results show that selecting at least half of the available ASWE values for calibration can yield reliable
INSAR-derived ASWE estimates. Additionally, although applying only the integer multiple of 2z improves the results, better

accuracy is achieved when the full calibration parameter is used. This suggests that the residual phase component has a
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pronounced contribution to the overall error and should not be ignored. Besides the results mentioned above, the factors that
affect the performance of this approach are discussed, such as coherence, air temperature, and snow density. Higher coherence,
lower temperatures, and more accurate snow density measurements are essential for achieving effective inversion results.
Regarding potential limitations, on one hand, it is noted that for the INSAR method to invert SWE effectively, longer
wavelengths and shorter revisit times (which improve coherence) are necessary, as well as longer time series observations for
better atmospheric effect estimation. This study uses C-band data with a 12-day revisit period, which can be improved using
lower frequency bands (L-band) and shorter revisit intervals. On the other hand, stations that directly measure SWE are
preferred, as many stations require snow density data, introducing some uncertainty into observations. Visual interpretation
errors in snow depth measurements through snow sticks may also happen, particularly in sloped locations, which could amplify
uncertainties. Despite these limitations, our validation results are still reasonable, providing a valuable reference for the broader

application of 12-day revisited Sentinel data in SWE inversion studies.
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